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Abstract—A general synthesis of chiral 4,5-dihydro-3H-dinaphthophosphepines 1a–g is described. The resulting ligands represent
a new class of monodentate chiral phosphines. First applications of 1a–g in the rhodium-catalyzed asymmetric hydrogenation of
unsaturated carboxylic acid derivatives demonstrate the usefulness of our ligands. Enantioselectivities up to 95% ee for the
hydrogenation of methyl �-acetamidocinnamate were obtained in the presence of 1d. This result represents one of the highest
enantioselectivities reported for asymmetric hydrogenation in the presence of monodentate phosphines. © 2002 Elsevier Science
Ltd. All rights reserved.

The synthesis of new chiral phosphines is of major
importance for organic synthesis. In general, bidentate
phosphine ligands have been found to give excellent
control in a number of catalytic asymmetric reactions.
Nevertheless, there is a continuing interest in new,
simpler phosphine ligands, which can be modularly
designed.

Among the different transition metal-catalyzed reac-
tions enantioselective hydrogenations are probably the
most important class of catalytic asymmetric reactions
in industry.1 In the past optically active diphosphines
were essential as chiral ligands in order to achieve high
selectivities in these reactions.2 Attempts to develop
chiral monodentate phosphine ligands for asymmetric
hydrogenation reactions which would afford high enan-
tioselectivities met only with limited success.3 To the
best of our knowledge the highest enantioselectivity
(90% ee) has been reported already in 1972 with CAMP
(R1R2R3P, R1=c-Hex, R2=o-Anisyl, R3=Me) as lig-
and for the hydrogenation of (Z)-�-acetamidocinnamic
acid derivatives.3c,4 Very recently however, more
efficient monodentate phosphoramidates were intro-
duced by de Vries and Feringa et al.5 as well as by
Zhou et al.6 for asymmetric hydrogenation reactions.
Monodentate phosphites and phosphines giving high

enantioselectivities were reported by Reetz et al.,7 by
Orpen and Pringle8 and by Helmchen et al.9

Due to the often easier synthesis of monophosphines
compared to diphosphines as well as the possibility of a
simple biphasic recycling of chiral phosphines by intro-
ducing water-soluble groups we became interested in
the synthesis of chiral monodentate phosphines, which
are easily accessible, and would give improved enan-
tioselectivities in asymmetric hydrogenation reactions.

At the start of our investigations we envisioned the use
of different 4,5-dihydro-3H-dinaphtho[2,1-c ;1�,2�-e ]-
phosphepine ligands 1. Surprisingly, these monodentate
atropisomeric ligands have been only scarcely investi-
gated.10,11 With the exception of a more complicated
resolution reaction by Gladiali and co-workers,
there has been no synthesis of enantiomerically pure
ligands 1 described.10 As shown in Scheme 1, seven
different 4,5-dihydro-3H-dinaphtho[2,1-c ;1�,2�-e ]phos-
phepine ligands 1 were synthesized in a simple and
straightforward manner from homochiral 2,2�-
dimethylbinaphthyl.12

On the one hand double metallation of 2,2�-dimethylbi-
naphthyl with n-butyl lithium in the presence of
TMEDA (tetramethylethylendiamine) and quenching
with commercially available dichlorophosphines gives
ligands 1a–d in 60–83% yield.13 On the other hand
double metallation, quenching with diethyl-
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Scheme 1. Synthesis of 4,5-dihydro-3H-dinaphtho[2,1-c ;1�,2�-e ]phosphepine ligands 1.

aminodichlorophosphine and subsequent reaction with
HCl gives the corresponding chlorophosphepine in 80%
yield. It is worthwhile mentioning that this chlorophos-
phepine is an extremely useful building block for the
synthesis of a variety of substituted 4,5-dihydro-3H-
dinaphtho[2,1-c ;1�,2�-e ]phosphepine ligands 1 by
uncomplicated Grignard reaction. Hence, ligands 1e–g
were prepared without optimization in 62–76% yield. It
is easily foreseen that the described procedure will not
only allow the preparation of other chiral monodentate
phosphepines, but is useful also for the synthesis of
bidentate phosphepines.

With a number of chiral monodentate ligands in hand
we were interested in their catalytic behavior. Initially
as a model reaction the asymmetric hydrogenation of
methyl (Z)-�-acetamidocinnamate 2a was studied at
ambient pressure (Table 1).14 This reaction is generally
accepted as a benchmark test for new chiral ligands.

Although there is a close structural relationship
between ligands 1a–c and the recently synthesized
MonoPhos ligand of de Vries and Feringa5 the alkyl-
substituted phosphepine ligands give only disappointing
enantioselectivities in the model reaction. However, the
aryl-substituted phosphepines 1d–g proved to be quite
selective ligands. Using 1 mol% [Rh(COD)2]BF4 in the
presence of 2 mol% ligand in 15 ml toluene enantiose-
lectivities up to 90% ee are obtained.

Next a screening of solvents and conditions was applied
to the ‘best’ ligand 1d. As shown in Table 2 the use of
ethyl acetate, THF, acetone, and methanol significantly
speeds up considerably the hydrogenation reaction.
Turnover frequencies (TOF) up to 500 h−1 were
observed at 50% conversion. Improved enantioselectivi-
ties are obtained in THF (92% ee) and ethyl acetate

(93% ee). However, the best selectivity is achieved in
toluene with SDS (SDS=sodium dodecyl sulfate) as
additive (95% ee). This result seems to be one of the
highest enantioselectivities ever reported for a monoden-
tate phosphine in the hydrogenation benchmark test for
chiral ligands. While most of the hydrogenation reac-
tions were performed in the presence of 1 mol% of
catalyst, it is possible to decrease the catalyst concen-
tration to 0.1 mol% without observing a negative effect
on yield and selectivity.

[Rh(COD)2]BF4/1d was also used as catalyst precursor
in asymmetric hydrogenations of substituted dehydro-
amino acid methyl esters and methyl itaconate (Table
3). In all reactions excellent yields and good

Table 1. Asymmetric hydrogenation of methyl �-
acetamidocinnamatea

LigandEntry ee (%) (R) t/2 (min)

1a1 47 6
4461b2

3 1c 20 52
4 1d 90 50
5 1e 74 12

1f6 82 36
1g 67 177

a Conditions: 1.0 mmol substrate; 0.01 mmol [Rh(COD)2]BF4;
cat.:ligand=1:2; 15 ml solvent; 25°C, 1 bar H2; solvent: toluene;
conversion: 100%.
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Table 2. Solvent screening in asymmetric hydrogenation of
methyl �-acetamidocinnamate for ligand 1d

SolventEntry ee (%) (R) t/2 (min)

901a 5Ethyl acetate
2b Ethyl acetate 90 8

93 83c Ethyl acetate
92Ethyl acetate 774d

925a 15THF
89Methanol 26a

7a 88Acetone 3
86CH2Cl2 48a

9e 95Toluene/SDS 36

a Conditions: 1.0 mmol substrate; 0.01 mmol [Rh(COD)2]BF4;
cat.:ligand=1:2; 15 ml solvent; 25°C, 1 bar H2.

b Rh:1d=1:1.
c Rh:1d=1:4.
d Rh:1d=0.1:1.
e Conditions like a +0.2 mmol SDS; conversion: 100%.

ligand structure and the synthesis of water-soluble lig-
ands are currently explored.
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